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Abstract

A solution for the deformation of viscous layers during a two-dimensional general deformation is derived. Layer deformation is found to con-
sist of components of pure shear, simple shear and pure rotation when considered with respect to the layer orientation. It is shown that for external
bulk pure shear the layer deformation is typically vastly different to that outside the layer, ranging from pure to simple to super shear depending on
layer orientation and viscosity contrast. Treagus’ method for determining viscosity ratio from cleavage refraction is re-evaluated and is found to
applicable under bulk pure shear. However, the presence of earlier LPS (layer-parallel shortening) can lead to erroneous viscosity ratio estimates.
A new approach is developed, relying on the variation of cleavage orientation with layer orientation that is found to be robust with respect to LPS.
The method is applied to examples from the Irish Variscides and the new approach has implications for determining whether or not LPS occurred
in this foreland setting.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Cleavage refraction is a common feature in folded low-grade
meta-sedimentary sequences where variations in bedding layer
competencies lead to changes in the orientation and intensity
of strain across these layers. The phenomenon was first de-
scribed in detail by Sorby (1853) who, along with Harker
(1886), believed it to represent refraction of finite strain where
cleavage tracks the XY plane of the finite strain ellipsoid. This
general relationship of finite strain to cleavage has and continues
to cause considerable controversy. Field studies by Siddans
(1972) and Wood (1974) clearly demonstrated that the cleavage
plane in highly deformed slates corresponds to the XY plane of
finite strain. The finite-element studies of Dietrich (1969), Die-
trich and Carter (1969), and Shimamoto & Hara (1976) con-
firmed the view that cleavage planes are parallel to the XY
plane. Treagus (1983) theoretically modelled refraction in
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planar Newtonian layers assuming a homogenous strain and
a heterogenous simple shear component that predicted strong
changes in strain ellipsoid shape, magnitude and orientation
across viscosity contrasts. However, the assertion by Treagus
(1988) that the relationship between strain and cleavage and
consequently between strain refraction and cleavage refraction
was not fully understood, is still valid today especially with
strain/fabric development in more competent lithologies. Ram-
say (1982) was the first to use the relationship of layer compe-
tence to cleavage refraction (cleavage refracting towards
bedding in less competent layers) to work out an ‘order of com-
petence’ in multilayers. Treagus (1999) went on, with some lim-
itations, to numerically quantify this effect in multilayers.

Treagus (1999) considered the possibility of determining
viscosity ratio using cleavage refraction. She concluded that,
because cleavage orientations may be immeasurably close to
the bedding normal (i.e. the direction initially normal to
bedding and subsequently deformed), cleavage refraction pat-
terns in rocks may provide a simple method of determining
effective rock viscosity ratios. The method is based on the
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shear strain-rate ratio and more practically the shear strain
ratio across a boundary being equal to the inverse viscosity
ratio (Treagus, 1983, 1988, 1999). This rule emerged from
considering the buckling instability of a layer oblique to the
principal compression direction (Treagus, 1973). The unper-
turbed state requires stress refraction between layer and matrix
for interfacial continuity. Treagus (1981) presented a 3D the-
ory for stress and infinitesimal strain refraction in oblique
layers indicating that strong variations in the orientation and
shape of the infinitesimal strain ellipsoid may occur from layer
to layer. Both Cobbold (1983) and Treagus (1983) derived the
simple expression relating strain-rate ratio and viscosity ratio
and Treagus (1983) further presented an algebraic relationship

between finite strain refraction and viscosity ratio. Also, the
finite strain may be factored from the strain refraction into
a layer-normal pure shear and a layer-parallel simple shear
(Treagus, 1988). Given this strain factorization, viscosity
ratios are estimated from cleavage refraction (Treagus, 1999).

In this paper a different, dynamic approach to strain refrac-
tion is taken, based on the two-dimensional theoretical frame-
work for the motion of a non-rigid ellipse immersed in
a viscous fluid recently developed by Mulchrone and Walsh
(2006). The evolution of cleavage refraction is described in
context of a progressive deformation as bedding rotates during
buckling.

2. Layer deformation

2.1. Single layer

Mulchrone and Walsh (2006) derived a solution for
the motion of a viscous ellipse (long axis a and short axis b)

immersed in a viscous fluid under a general deformation in
2D, where the ratio between the external and internal viscosities
is given by mr. In addition, no slipping was allowed at the inter-
face between the inclusion and the enclosing material. It was as-
sumed that the fluids were Newtonian and that the flow was
Stokes flow, in other words dominated by viscous effects and
characterised by a low Reynolds number. By letting the long

axis (a) of the ellipse approach infinity, the ellipse becomes
a layer of infinite extent with across-layer thickness b. Therefore
modifying the equations derived by Mulchrone and Walsh
(2006) by taking the limit as a/N, we find expressions govern-
ing the motion of an infinite layer under a general deformation.

The set of differential equations reduce to:

df

dt
¼ 1

2
ðL21� L12þ ðL12 þ L21Þcos 2f� 2L11sin 2fÞ ð1Þ

db

dt
¼�1

2
b

�
2L11cos 2fþ ðL12þ L21Þsin 2f

�
ð2Þ

where f is layer orientation with respect to the fixed axes relative
to which the bulk deformation is defined. The velocity gradient
tensor can be constructed from the velocities as follows:

L¼

0
BB@

vvx

vx

vvx

vy
vvy

vx

vvy

vy

1
CCA ð5Þ

To understand this tensor better in terms of the type of de-
formation it represents, L is rotated by �f so that it is parallel
to the layer and in this reference frame is denoted by L0. Dif-
ferentiating vx and vy appropriately it is found that:

To understand this tensor it is helpful to decompose it
into additive components which add together to make up
the above tensor (see for example Lai et al., 1993, p.
108). It can be thought of as being composed of the follow-
ing deformation components:

representing a pure shear component,

L0ss ¼
1

2

�
0 2mrððL12þ L21Þcos 2f� 2L11sin 2fÞ
0 0

�
ð8Þ
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representing a simple shear component, and finally components. In addition, it is important to appreciate that
the components of deformation all vary with layer orientation

L0r ¼
1

2

�
0 L12 � L21þ 2L11sin 2f� ðL12þ L21Þcos 2f

�ðL12� L21 þ 2L11sin 2f� ðL12þ L21Þcos 2fÞ 0

�
ð9Þ
representing a pure rotation. The various deformation compo-
nents are related as follows:

L0 ¼ L0ps þL0ssþL0r ð10Þ
This analysis corresponds well with the theory of Treagus

(1988) in so far as both the pure shear and rotational compo-
nents of the deformation are independent of the viscosity ratio
whereas the simple shear component depends on mr. Addition-
ally, it demonstrates that for a general bulk two-dimensional de-
formation the internal deformation of an enclosed layer can be
decomposed into layer-parallel pure and simple shear compo-
nents. The added rotational component corresponds to a rigid
rotation and therefore does not affect the final strain state. All
three deformation components vary with orientation but only
the simple shear component varies with the viscosity ratio.

It is clear from Eq. (6) that the finite strain state resulting
from deformation within the layer is due to a continuous
superposition of the pure and simple shearing layer-parallel
which varies with time as evidenced from both Eqs. (1) and
(9). Therefore, because layer orientation varies with time, so
too do the deformation components.

The present analysis has important assumptions built into it.
As Treagus (1999) highlighted in non-linear materials that viscos-
ity ratio is likely to vary over time and will depend on layer orien-
tation and the bulk deformation history. Therefore viscosity ratio
is an effective ratio that describes flow properties integrated over
a period of time and that we should really only discuss compe-
tence or ductility contrasts (Ramsay, 1982). In the present theory,
a Newtonian rheology is assumed and the effect of layer orienta-
tion, related variation in layer deformation characteristics and
general bulk deformation are considered.

For the remainder of this paper the case of a bulk external
pure shear deformation (i.e. L12¼ L21¼ 0) is considered so
that L0 (Eq. (6)) reduces to:

L0 ¼
�

L11cos 2f L11ð2mr� 1Þsin 2f

�L11sin 2f �L11cos 2f

�
ð11Þ
cl layer
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layer
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direction
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Fig. 1. Schematic representation of situation under consideration. Angles are measured as shown (fcl, cleavage angle and flayer, layer angle).
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This choice both simplifies the mathematics and represents
a common geological situation where layers are deformed. A
schematic representation of the situation is presented in Fig. 1.

2.2. Multilayer

Mulchrone and Walsh (2006) considered the case of an iso-
lated elliptical object of a different viscosity to the surround-
ing medium. Hence, the present analysis would also appear
to only apply to an isolated layer. However, as the long axis
of the elliptical object approaches infinity, the disturbed flow
usually found near the ellipse disappears and becomes homo-
geneous and equivalent to the bulk flow. Thus the flow at the
layer boundary is equivalent to the bulk flow so that continuity
and compatibility is assured for any number of parallel layers.
Therefore, the model can also be applied to multilayers.

3. Cleavage refraction, fanning and deformation history

3.1. Introduction

In this section, deformation behaviour is predicted on the
basis of kinematic vorticity. This analysis identifies three dis-
tinct behavioural categories: (i) less viscous layer (1<
mr�N); (ii) more viscous layer ðð1=2Þ � mr < 1Þ and (iii)
strongly viscous layer ð0 � mr < ð1=2ÞÞ. Secondly the behav-
iour of the orientation of the finite strain ellipse and the direc-
tion initially normal to the layer (DINL) is investigated for
each category.

3.2. Vorticity

Ghosh (1987) showed that in 2D the kinematic vorticity
number (Wk) associated with a deformation is calculated
from the velocity gradient tensor as follows:

Wk ¼
L21 � L12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
11þ L2

22þ ðL12þ L21Þ2
q ð12Þ

By substituting from Eq. (11), for the present case, Wk is
given by:

Wk ¼
L11ðmr � 1Þsin 2fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
11

�
cos2 2fþ m2

r sin2 2f
�q ð13Þ

If we choose our reference frame such that L11 is positive
then it cancels out of the expression, giving:

Wk ¼
ðmr� 1Þsin 2fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 2fþ m2
r sin2 2f

q ð14Þ

Differentiating with respect to f and equating to 0, it is
found that the minimum and maximum values of Wk occur
for f¼� 45�. For f¼�45�, we find that:

Wkjmax¼�
mr � 1

mr

ð15Þ
From Eq. (15), it is clear that for less viscous layers
(1< mr�N) the internal layer deformation style can vary
from pure shear ði:e: Wkjmax ¼ 0; mr ¼ 1Þ to an upper limit
of simple shear ði:e: Wkjmax ¼ 1; mr ¼ NÞ, but that super
shear ði:e: Wkjmax > 1Þ cannot occur. In Fig. 2 the relationship
between mr, layer orientation and Wk is illustrated. A tendency
exists for the internal layer deformation to rapidly approach sim-
ple shear-dominated behaviour even at a relatively small angle
to the bulk deformation stretching axes (Fig. 2a). This behaviour
is particularly accentuated for layers where mr> 4. The shear
sense is always antithetic to the rotation of the layer (Fig. 3a).

For more competent layers two classes of behaviour are evident.
Firstly, for ð1=2Þ � mr < 1, the internal deformation ranges from
pure shear to simple shear (Fig. 2b) where the shear sense synthetic
with the layer rotation (Fig. 3b). For strongly viscous layers, includ-
ing fully rigid layers ð0� mr < ð1=2ÞÞ behaviour ranges from pure
to simple shear and beyond into the super shear regime (Ramberg,
1975) as a function of orientation. However, in this case, the angle
between the layer and the shortening axis must be in excess of 20�.
In other words, for suitably oriented layers whose viscosity is more
than twice that of the surrounding medium, super shear and pulsat-
ing deformations (Ramberg, 1975) are possible.

It is possible to identify three categories of behaviour ac-
cording to the model:

� Type I: less viscous layer, antithetic.

Fig. 2. Variation of vorticity number (Wk) as a function of layer orientation (f)

during a bulk pure shear deformation. Numbers annotated on curves represent

the viscosity ratio mr. (a) Less viscous layer. (b) More viscous layer.
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Less viscous layer

More viscous layer

Layer sense
of rotation

Internal
sense of

shear

(a)

(b)

Bulk
deformation
stretching

axes

Fig. 3. Sketch illustrating the relationship between layer rotation and internal deformation shear sense.
� Type II: more viscous layer, ð1=2Þ � mr < 1, synthetic.
� Type III: strongly viscous layer, 0 � mr < ð1=2Þ, synthetic.

3.3. Finite strain and DINL behaviour

Both the intensity (i.e. axial ratio) and orientation of the fi-
nite strain ellipse in a deforming layer are important because
cleavage intensity and orientation are assumed to be directly
related to finite strain (e.g. Price and Cosgrove, 1990, pp.
450e453). The behaviour of directions initially normal to
the layer is also of interest because folding is often interpreted
to be preceded by an initial layer-parallel shortening (LPS)
with layer-normal cleavage development. This is often true
in fold-thrust belts (Mukul and Mitra, 1998, for example).

Provided the layer remains straight, deformation inside the
layer is homogeneous at all times so that the evolution of finite
strain over time may be calculated using the method given by
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Mancktelow (1991) (see also Middleton and Wilcock, 1994,
pp. 244e245). To simulate progressive deformation, the layer
is initially perturbed to be at a small angle with the shortening
direction. This geometry is akin to the approach used in finite-
element modelling of buckle fold development whereby an
initial sinusoidal perturbation is imparted in a layer to seed
fold development (Viola and Mancktelow, 2005). The maxi-
mum angle of an initial sinusoidal perturbation can be easily
calculated in radians as ð2pA=lÞ, where A is the amplitude
and l is the wavelength. From a survey of finite-element
fold models (see Table 1), it is clear that using layers initially
at angles of 2�, 4� and 6� is consistent with common practice.
This perturbation is applied to the initial orientation of a per-
fectly straight layer, which remains a straight layer thereafter,
so a sinusoidal perturbation is not used.

Fig. 4 presents the results of the model for a less viscous layer
(Type I, mr¼ 5.0), a slightly more viscous layer (Type II,
mr¼ 0.75) and a strongly viscous layer (Type III, mr¼ 0.2).
For mr¼ 0.75 the DINL orientation and that of the finite strain
ellipse are virtually indistinguishable, consistent with the anal-
ysis of Treagus (1999). However, for the less viscous layer an
initial ðRs � 3:0Þ discordance exists of up to 15�. From Fig. 4,
it is clear that the layer is rotating counter-clockwise (when
counter-clockwise is positive and clockwise is negative)
whereas initially the finite strain ellipse is oriented clockwise
of the DINL. This result is consistent with the analysis of the pre-
vious section. Where mr¼ 5.0, initially both the orientations of
the DINL and the finite strain ellipse rotate clockwise whilst the
layer rotates counter-clockwise. Depending on the initial layer
angle, this rotation changes to counter-clockwise as the layer

Table 1

Perturbation angles employed in previous finite-element studies

Study Maximum perturbation

angle (degrees)

Dieterich and Carter (1969) 3.0

Dieterich and Onat (1969) 20.9

Dieterich (1969) 1.2, 1.5, 3.0

Parrish (1973) 4.0

De Bremaecker and Becker (1978) 20.1, 30.1

Lewis and Williams (1978) 0.05, 0.5, 0.9

Lan and Hudleston (1991) 3.0, 4.0

Mancktelow (1999) 3.0

Viola and Mancktelow (2005) 1.4
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Fig. 4. Graphs illustrating relationships for orientation of layer (dashed line), direction initially normal to the layer (DINL) (medium weight), long axes of strain

ellipses (heavy weight) versus the bulk finite strain value (i.e. finite strain axial ratio, Rs). For (a, d, g) the initial layer angle is 2�, for (b, e, h) it is 4�, and for (c, g, i)

it is 6�. Note that the ordinate axis is non-linear due to the non-linear accumulation of strain in pure shear with linear time.
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steepens to angles in excess of 25�e30�. By contrast, the oppo-
site behaviour occurs for the more viscous layers, where both the
finite strain and DINL orientations rotate synthetically with the
layer, but once the layer angle exceeds approximately 40� for
mr¼ 0.75 and 60� for mr¼ 0.2, they rotate antithetically as layer
steepening continues.

Internal deformation accumulates rapidly in the less vis-
cous layer by comparison with the bulk strain, whereas the op-
posite is true for more viscous layers (Fig. 5). Interestingly for
mr¼ 0.2 (a layer only five times more viscous than the
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Fig. 5. Graphs illustrating relationship of internal layer finite strain axial ratios

(R) versus bulk finite strain (Rs). Numbers adjacent to curves represent the ini-

tial orientational perturbation (either 2�, 4� or 6�) given to the layer. Note the

varying scales on the y-axis. Note that the ordinate axis is non-linear due to the

non-linear accumulation of strain in pure shear with linear time.
surrounding material), the internal deformation unstrains
when the bulk shear axial ratio exceeds 18e20, corresponding
to layer orientations of around 60�. This unstraining occurs be-
cause the long axis of the internal finite strain ellipse rotates
along with the layer until it achieves an orientation where
the internal deformation essentially reverses the previously ac-
cumulated strain. This model clearly illustrates that finite
strain values should vary strikingly with lithological and mate-
rial properties, as well as with deformation history.

4. Application to viscosity ratio determination

4.1. Re-examining the method of Treagus (1999)

Before developing our new method, the method proposed
by Treagus (1988, 1999) is examined with data generated by
the current model. Treagus (1999) tentatively suggested that
at a layer interface the cleavage bedding angles (mA and mB

in Fig. 6, mr¼ mB/mA) can be used to estimate viscosity ratio
according to the following relationship:

A

B

A

B

l

Fig. 6. Cleavage bedding angles used in the method of Treagus (1999). The

cleavage bedding angle in layer A is qA and for layer B it is qB. At any given

instance the layer makes an angle fl with the horizontal. It follows that,

qA¼ fsA� fl and qB¼ fsB� fl.
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tan qA

tan qB

¼ mA

mB

ð16Þ

Two representative cases are presented in Fig. 7, with
strongly different viscosity ratios were simulated to test the ap-
plicability of Eq. (6). For the case of less viscous layer, the ini-
tial orientation perturbation of the layer caused a decreasing
variation in predicted viscosity ratio and an increasingly accu-
rate prediction with increasing bulk pure shear (Fig. 7a). Con-
versely, when layer viscosity is 10 times greater than the
medium, the accuracy of the predicted viscosity ratio de-
creases with increasing bulk pure shear while showing greater
variation as a function of initial angular perturbation (Fig. 7b).
These cases are at opposite extremes. Between them, the
method suggested by Treagus (1999) becomes more and
more accurate the closer mr approaches 1 from either direction.
However, outside of these extremes accuracy of estimation
decreases.

This analysis shows that the method of Treagus (1999)
should lead to fairly accurate estimates of viscosity ratio. It
also indicates that estimates from less viscous layers which
have not enjoyed much rotation or from steeply oriented com-
petent layers will be less accurate.
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Fig. 7. Plot of estimated mr versus bulk strain in the case of an actual value of

(a) mr¼ 10 and (b) mr¼ 0.1. The numbers on the curves represent the size of

the initial perturbation in degrees. Note that the ordinate axis is non-linear due

to the non-linear accumulation of strain in pure shear with linear time.
4.2. Effect of layer-parallel shortening (LPS)

Layer-parallel shortening is suspected to occur in advance
of buckling in many geological settings, especially fold-thrust
belts (Cooper et al., 1986; Mukul and Mitra, 1998). The effect
of such a common deformation behaviour on the determina-
tion of viscosity ratio for the method of Treagus (1999) is con-
sidered for the case of an LPS with a finite strain magnitude of
2.0. After the LPS, the layer is deformed as before and the
method of Treagus (1999) is applied to calculate the viscosity
ratio (Fig. 8). Firstly, different initial perturbations in orienta-
tion have little effect on the accuracy of the estimation of mr,
this is why one curve is evident instead of five distinct curves
for initial perturbations of 1�, 2�, 3�, 4� and 5�. Secondly and
most importantly, we see that the method breaks down badly
for small subsequent bulk finite strain; however, it does pro-
vide a fairly accurate estimate at high subsequently applied
bulk strains. This example illustrates that even though the
method of Treagus (1999) works fairly well in the setting of
bulk pure shear rotated infinite layers, it must be used with
caution in other situations. The added complexity of LPS
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Fig. 8. Plot of estimated mr versus subsequently bulk strain in the case of LPS

with an actual value of (a) mr¼ 10 and (b) mr¼ 0.1. Curves (overlain and not

all visible) represent trajectories for perturbations from 1� to 5�. Note that the

ordinate axis is non-linear due to the non-linear accumulation of strain in pure

shear with linear time.
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Fig. 9. Cleavage angle (fcl, i.e. finite strain ellipse long axis) versus layer orientation (flayer) for different bulk total strain (value indicated on each graph). See
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(and quite likely any deviation from bulk pure shear) may re-
sult in erroneous estimates.

4.3. An alternative approach

The previous section naturally leads to an investigation of
potential alternative approaches. Perhaps one of the most ob-
vious features of cleavage/strain refraction in the context of
a folded layer is the associated fanning of cleavage, commonly
observed in the field (Ramsay, 1967, p. 404). Cleavage fanning
is related to competency and converges in competent layers
whereas it diverges in incompetent layers (Ghosh, 1993, pp.
297e298). On this basis, the relationship between layer and
cleavage dip was investigated as a potential candidate for es-
timating viscosity ratio. Under a bulk pure shear deformation,
the variation in limb dip around a fold is due to the ongoing
growth of an initial perturbation (Johnson and Fletcher,
1994, pp. 196e218). Therefore, in studying the relationship
between limb and cleavage dip, the initial orientation perturba-
tion is varied while the finite strain is constant (Fig. 9).

For each value of mr, 10 layers perturbed evenly from 0� to
5� are deformed up to a total bulk strain of 54.60. Layers more
viscous than surrounding material have a linear relationship
between layer and cleavage dip for strain ratios of up to about
11 (Fig. 9a), implying that cleavage dip is proportional to layer
dip. It is also clear from Fig. 9a that the slope of the linear re-
lationship varies with viscosity contrast. As the total strain in-
creases, the relationship between layer and cleavage dip
becomes non-linear. It is proposed that by fitting a straight
line to layer dip versus cleavage dip data, the slope of the fitted
line (slope is used in the mathematical sense and denoted by s)
is a suitable measure to compare with mr.

The situation for less viscous layers is more complicated
(Fig. 9b). A non-linear relationship exists at small strains
and a linear relationship emerges only at limb dips 	50�,
which makes simple analysis difficult.

Returning to the case of the more viscous layer (0� mr< 1,
Types II and III) a graph of the relationship between s and mr is
given in Fig. 10 for a variety of maximum bulk strains. This
graph was produced by varying mr from 0 to 1 with 0.01 sized
incremental steps as a layer of initial orientation 0.5� evolve.
Using the relationship between the cleavage and layer orienta-
tion, the value of s was calculated for each value of mr. For
bulk strains less than approximately 50, the relationship is lin-
ear and is simply given by:

mr ¼ 1� s ð17Þ
At greater total bulk strains, non-linearities occur, making

the relationship difficult to interpret.

4.3.1. Effect of LPS on the new method
To consider the effect of LPS on the accuracy of the new

method, a simulation was performed in Mathematica which
varied the component of LPS from 1 to 5 and the total subse-
quently applied pure shear from 1 to 10. Additionally, the in-
fluence of the initial layer perturbation was also investigated.
It was found that for small subsequently applied pure shear
ði:e: Rs � 2:5Þ errors in excess of 10% can occur
(Fig. 11). However, if Rs	 5 then the error is less than 2%.
The error does not appear to increase dramatically with the
level of LPS and it was found to be independent of the initial
layer perturbation. This result contrasts with the strong influ-
ence of both layer perturbation and LPS (Fig. 7) on the method
tentatively suggested by Treagus (1999).

Fig. 10. Graph of the relationship between s and mr determined at different to-

tal bulk strains. Accumulation of finite strain of 148 is geologically unrealistic

but is included here to illustrate that the method becomes unreliable at very

high finite strain.
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5. A case study from the Variscides of southwest Ireland

This study looked at bedding/cleavage relationships across
three mesoscopic fold profiles from the Variscan of southern Ire-
land. This area lies at the western extremity of the Rhenohycer-
nian Zone of the European Variscides and consists of an Upper
Palaeozoic, predominantly continental clastic sequence that was
deformed into a series of E-W trending regional folds with asso-
ciated high-angle reverse faultings and penetrative cleavage at
the end of the Carboniferous (Gill, 1962; Cooper et al., 1986;
Meere, 1995). The first fold is located at White Strand on the
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Fig. 11. Graph of error of viscosity ratio estimation as a function of the initial

LPS (ordinate axis) and subsequent bulk pure shear (coordinate axis).
Old Head of Kinsale (W 613 428, Irish National Grid), the sec-
ond at Fountainstown Strand south of the village of Myrtleville
(W 788 582) and the third on the southern flank of Hungry Hill
on the Beara peninsula (V 745 486). The structure at White
Strand consists of well-bedded turbiditic mudstones and me-
dium-grained sandstones of the White Strand Formation (Nay-
lor et al., 1985) folded into an open, steeply inclined and
gently plunging anticline with an axial planar cleavage that is
best developed in sandstones. In contrast, the fold at Fountains-
town contains siltstones of the Kinsale Formation (Naylor,
1966), is again an open, upright, gently plunging anticline
with a very well developed penetrative axial planar cleavage.
Lastly, the fold at Hungry Hill consists of sandstones and silt-
stones of the Caha Mountain Formation (Coe and Selwood,
1963) and is also an open, upright, gently plunging anticline
with a very well developed axial planar cleavage that is highly
penetrative, fine and continuous in the siltstones and more
spaced and disjunctive in the sandstones (Fig. 12). For each
fold, bedding dip versus cleavage dip is plotted for full fold pro-
files. The periodicity of the full 180�-dip value range is removed
to facilitate the interpretation of the angular relationship be-
tween both fabrics (Fig. 13a, b, c).

Data from the Fountainstown fold (Fig. 13a), which con-
sists of a monotonous sequence of siltstones, illustrates that
there is negligible cleavage refraction across layers and that
the fabric is essentially parallel to the axial plane of the struc-
ture. While this geometry is consistent with late-stage cleav-
age development overprinting the fold, it can also be
attributed to early/syn-folding ongoing cleavage development
within layers with a low competency contrast as illustrated
in Fig. 3d, e, f and Fig. 9b. These plots clearly indicate that
in the case of a low competency contrast between units, the
orientation of the finite strain ellipse remains remarkably con-
stant with the x-axis maintaining a vertical orientation.
Fig. 12. Field photographs and interpretative sketches of cleavage refraction across the profile of the fold studied on the southern flank of Hungry Hill on the Beara

Peninsula, SW Ireland (Irish National Grid: V 745 486). Black lines represent bedding (S0) and grey lines represent cleavages traces (S1).
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Data collected from competent sandstone layers in the
White Strand fold (Fig. 13b) demonstrate a clear linear rela-
tionship between bedding and cleavage dip consistent with
the maintenance of high angular discordance between the
fabrics during folding as illustrated in Fig. 3g, h, i and
Fig. 9a. The slope of the best-fit line between bedding and
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Fig. 13. Plots of fold bedding versus cleavage dip for the three fold profiles

studied: (a) Fountainstown; (b) White Strand; and (c) Hungry Hill. The peri-

odicity of the full 180�-dip value range is removed to facilitate the interpreta-

tion of the angular relationship between both fabrics.
cleavage is therefore a proxy measure of the competency of
this unit. The slope s is estimated to be 0.81, giving a viscosity
ratio of 0.19, corresponding to a layer five times more viscous
than the surrounding material.

Finally, the data from Hungry Hill (Figs. 12 and 13c) de-
scribe cleavage orientation behaviour from interbedded sand-
stone and siltstone layers. In each case, we see the expected
behaviour from both lithologies with cleavage in the less
competent siltstones maintaining parallelism with the axial
plane while the fabric in the sandstones maintains a high
angular discordance with bedding. The slope of 0.50 indi-
cates that the sandstone layer is twice as viscous as the sur-
rounding material. Again, it is evident that this behaviour in
bedding/cleavage relationships within units with contrasting
competencies across the fold profile cannot uniquely con-
strain the relative timing of folding and cleavage develop-
ment. The method of Treagus (1999) was also applied to
the fold at Hungry Hill and calculated values for mr lie be-
tween 0.20 and 0.35, i.e. the sandstone layer is three to
five times more viscous than the surrounding material. These
estimates are significantly different to the value calculated
from the across fold cleavage dip/bedding dip relationship.
In view of the linear relationship between cleavage dip and
bedding dip (Fig. 13c), it is possible that conditions deviated
from the simple bulk pure shear scenario required by
Treagus’s method. There are a multitude of possibilities in-
cluding LPS or initiation of cleavage later in the deformation
sequence.

Considerable debate has occurred about the relative timing
of cleavage development in the Irish Variscan. The prevailing
view is that this foreland area enjoyed considerable layer-par-
allel shortening (LPS) cleavage development prior to the onset
of regional buckling and reverse faulting (Cooper et al., 1986;
Ford, 1987). Evidence to support LPS includes the parallelism
of the XY plane of strain markers (e.g. burrows, desiccation
crack septae intersections) to cleavage and the presence of
‘sheared cleavage’ across bedding planes due to flexural slip
folding. The results from this study are a clear illustration
that the angular relationship between bedding and cleavage
across fold profiles are not a product of a unique folding/cleav-
age development history and have limited use in establishing
a relative deformation chronology between folding and cleav-
age development. In the case of the Irish Variscan, the paral-
lelism of the XY flattening plane of strain markers with
cleavage does therefore not conclusively demonstrate that
cleavage development was primarily associated with LPS,
and may in fact have been synchronous or even postdate re-
gional folding. The distinction between compositionally sensi-
tive passive cleavage refraction across folded sedimentary
layers and simple shear associated with flexural flow folding
is also vitally important in constraining the sequence of defor-
mation events in foreland fold/thrust belts. The presence of
sheared cleavage is, in itself, not conclusive evidence for early
cleavage development as its presence may simply represent
a deflection in cleavage dip orientation due to refraction driven
by localised competency gradients. This study, therefore, is
a clear warning that the importance of LPS in orogenic
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forelands, especially in the Irish Variscan, needs to be thor-
oughly re-examined.

6. Discussion and conclusions

In this paper, we have extended the work of Mulchrone and
Walsh (2006) to cover the case of an infinite layer. The layer
deformation consists of components of pure shear, simple
shear and pure rotation when considered relative to the layer
orientation. Concentrating on the case of bulk pure shear,
the model allows prediction of the orientation of the long
axis of the strain ellipse due to the complex deformation his-
tory associated with layer rotation. It was shown how the de-
formation occurring inside a layer can be vastly different than
that of the external (driving) deformation. Using this model,
the accuracy of the method for estimating viscosity ratio
suggested by Treagus (1999) was tested and found to be rea-
sonably accurate; however, any departure from simple as-
sumptions may lead to erroneous estimates. An alternative
approach was developed which relates: (i) the slope of the pre-
dicted linear relationship between cleavage dip (i.e. finite
strain long axis) and layer dip; and (ii) the viscosity contrast
between the layer and the enclosing media. The method
only applies in the case of a competent layer and for any
fold system where deformation processes do not produce
a strain component due to tangential longitudinal strain. It
was found that in the case of LPS, the method is robust to de-
viations from simple scenarios. This robustness is probably
due to the use of data from around a fold profile in the method
rather than a single sample. The method has been applied to
folds from the Irish Variscides which exhibit linear relation-
ships between cleavage and layer orientations. Furthermore,
the model indicates that certain features previously used as ev-
idence for LPS in the Irish Variscides are essentially equivocal
and cannot be used to argue the case either way.
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